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Summary
An examination is made of the literature on missing observations or missing

vectors of otservations in multivariatesituations. Missing values can occur at random,
bydesign,or byimpossibility. Mostwork to datehas beenfor randomlymissingvalues,
with a concentrationon computing values for the missingobservations. The problems
encountered in the three situations are discussed with regard to testing and estimation.
Manymultivariate procedures become questionable in the presence of missing values.
It is concluded that a considerable amount of theoretical work is required before the
problems can be resolved.
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Introduction

Multivariate problems in the real world are many as data are, in general,
multivariate in nature. As pointed out recently by Gnanadesikanand Kettenring
[11] most of the theoretical work is directed towards the distributiontheory and
inference procedure, formal mathematical proofe, extension of the univariate
situations by analogy and with simplified assumptionslike multivariatenormality.
There is a large gap between users' needs and the available statistical tools, as will
be illustrated later in this paper. However, the useful applications of multivariate
analysis in the recent years in biological and social sciences have given a better
insight into the interrelationships between the observed variables in many
situations and has helped in a meaningful interpretation of the results and planning
of the strategies to be adopted. In the applications of multivariate analysis, as in
biology, common problems like missing data, mixtures of distributions, and
absence of information on the underlying distribution have been frustrating.
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Hence,there isaneedtoassessthe methods themselves inorderto^dmodifications of the available techniques to meet the above difficult but frequent
improperuse ofmultivanate analysis in the hands of users with inadequate appreciation of

he complexity ofinteipretationhas led to unjustified conclusions. This is essential

lesutoi^r' computerpackages, unjustified conclusions, and
^ component analysis,

wirr r II were treated as ifthey were inter^^hangeable.
difftSSows^ '

:L^t the matrix ofcoefficients applied to vector x
De A, and 1 is the variance covariance matrix ofthe x's. Then AA' =I and its
vamn^ ^vanance matrix^ftransformed variates which are linear combinatio,^
ih^-w ' "Senvalues ofthe variance covariance matrixare obtained by solvingthedifferentialequationl 2,- XI | = 0. The linear combinations are oittogonal
and maximizing the vanance we can get out of the pvariables.
CanontcalAxioms :Of the p-dimensional sample space of the huniverse

(N^P, * whe,eN= N.t ...t
and ^ variance covariance matrix of each of .he p-variale sample enois is
which IS estimated by therelation

$=(N-hr
' 1-1

Factor Analysis: Themodel is

2 (N.-I)i"

^"M' + r f+_
(pxl) (pxl) (pxni) (mxi) CO

Aisa Dxn S , ^® N(0,A) and is independent offand
Ttf , non-negative elements, and the matrix TT' is of-

rai^m <p. Thus, pnncipal component analysis maximizes the variance obtainable
rnalvsisThe^S orthogonal to each other. In discriminant

t combinations are so chosen to maximize the ratio of treat^nent
Ltween ÊrrorSS). In canonical analysis, we maximize the correlationn the linear combinations of Yand linear combinations of Xand the

Sf itis condensationandpossible deletion of fectors to ensure simplifying and reduciiig in the
dimensionality in terms ofsome meaningful ra/jer-varwWej.



missing OBSmVATIONSINMVLTIYARIATEANALYSIS

1 ® maximum discriminating ability may not be

included in the expenments by Federer and Wijesinha [9].

ei.ht muliivariate method^ which have been most commonly use^ inight fields of investigation (based on asurvey of nearlv IS nnn rpr> ,f \ e

While fc objtcdves ofm.I.ivari.,e .miysis l„
a) reduction in dimensionality
b) increasing the. sensitivity of the analysis by analyzing the

intercoirelation between variable not possible in individual univariateanj yses but which can be cleariy brought out in multivariate analysis!
rp'iST"!- structure of the data for fiinctiorialrelatijinships among the variables, andd) classifi^tion -discriminant analysjsj^jrespecified groups as differem
species), clustenng problems (groups obtained by data analysis)

from the table below: Kanya, Knshnaiah, and Rao, [17], as ieen
. Objec^ves m real world application of nhi^ /; • • •

normality; missing date).

multivariate analysis. (Ex. genetic diversity ""nparametnc approaches).
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3. Explore the structure underlying thedataon 3. Development of inference procedures
functional relationship among the variables. and of confidence regions and.tests ot
(Ex., a. Cytoplasmic differentiation in terms significance and establishing optimality
of protein synthesis and photosynthetic . properties of such techniques (based on
apparatus; Bhakta, [4], Thakur [40] and b. oversimplifiedassumptions).
Cytochemical changes in the evolution of
Lathyrus species, Narayan, [28]).

4. Classification

(a) Discrimination analysis between prespecified
groups. (Ex., Interspecific divergence;
chromosome substitution lines in wheat;
Murty [24]).

(b) Clustering i.e., groups formed from the
analysis of the data. (Ex. anthropometric
surveys; Rao [13]; classification of world
collections of crops like wheat, maize,
sorghum, etc.MurtyandArunachalam [25]).

Difficulties of application of multivariate analysis in the real world

Some of the problemsof interpretation of results from multivariate analysis
have been, to some extent, due to the uncritical use of available techniques.
Hbweyer, the divergence between the objectives andthe orderof priorities in the
real-world applications and in the theoretical work in multivariate analysis has to
be bridged to make a successful impact for wider use, in light of the growing
number of research journals; Consideringthe following four desiderata proposed
by Gnanadesikan and Kettenring [11],

(i) usefulness in revealingwhat is in the data,

(ii) easeofusci

(iii) diagnostic value - the nature of departure of the data from the key
assumptions of the model, and

(iv) formalstatisticalproperties likeoptimality, robustness, etc.,

the importance andpriorities are in opposing directions, particularly in thecaseof
missingdatabeyondthecontrolof theexperimenter. In the real worldapplications
(i) is more important than (ii) and (iii) is more important than (iv). In published
papers onthetheoretical aspects, there ismuch more emphasis on(iii)and(iv)than
on(i)and (ii). Evenfor(iii), whendeparture from key model assumptions isevident
as in the case of "missing data", enough effort is not made in modifyiiigmethods
forappropriately handling thedata. The large output ofpublications onaspect (iv),
statistical properties, is not linked to theneed forusefulness in revealing whatis in
the data.
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Relativeutility of commonly usedmethods

A re-examination of the sununary information by Gnanadesikan and
Kettenring [11] on the relative usage of different multivariate methods and 21
criteria for comparing these methods, has revealed the inadequacy of four most
commonly used multivariate methods to meet the special problem situations
commonly metintherealworld. Thefour mostcommonly used methods arefactor
analysis, discriminant analysis, principal component analysis, and cluster analysis.
The criteria of concern for the most common problems in the multivariate
applications are (A) Versatility (utility for several purposes), (B) Easy handling of
incomplete observations, (C) Insensitivity todistributional assumptions (example,
departure for normality, nomandom missing values), and (D) robustness against
outliers.

From the summary in Table 1, it is evident that the most extensively used
methods are notadequate for thespecial situations particularly B, C, and D, and
may lead to incorrect conclusions unless the method is modified. Solutions are
needed for handling "missing data" that are beyond the control ofthe experimenter,
i.e., data are not missingat random.

Missing data : The UnderlyingPrinciple

Supposem observations are missingand our model then will be

X
(Nx 1)

Xi- •
(mx 1)

X2
(n- mx 1)

Z' p + e
(nx qj (qx 1)

Zi'
(™* q) .

Z2'
(n- mx q)

p + e

Assuming that thenormal equation matrix ZZ' has a simple form and canbe
easily inverted, we estimate 3 from the N-m actual observations where

p=(Z2 Z2')-' Z2 X2 =(z zr' [iq - Zi Zi' (z zr'i Z2 X2

=(Z Z')"' [Iq +Zi( - Zi' (Z zr' }Zi' (ZZ')-' Z2 X2
Therefore x^ = Zj' p where x^ arethe calculated mdummy observations.

Nowam= X2'X2- X2'^'.p with N-m-q degrees offreedom. Using these
dummy observational estimates, wei can show that a^, =X'X- X'Z' p. Anderson
[1] summarized the situatiofl~as follbws in the case of missing observations in a
simpler manner. Let X = (Y'Z')' ,wh^re Y has p components and Z has q
components, be distnbuted asN( n, 2 ) where



Table 1. Criteria for comparing four multivariate methods

Criteria ofcomparison

Multivariate
Method Versatility

A ,

Easy Handling of
Incomplete

Observations

B

Insensitivity to
Distributional
Assumptions

C

Robustness
Against
Outliers

D

(Missing Data)
1. FactorAnalysis No-

Doesnotpossessthe
characteristic

No Neutral ? No — but adjunct
available

2. Principal Component Analysis Yes —

Possessthe characteristic
No

s. Neutral ? No — n

3. Discriminant Analysis Yes-

Possess thecharacteristic
No Neutral ? No — R

4. K—means clustering / ' No_ , j
. , . Does notpossess the. 1

characteristic

' ' 1

Not at^ll Possess the

characteristic
No—

\.

S

I

I
3

a

8



MISSING OBSERVATIONSINMULTIVARIATEANALYSIS 113

and M observations ale more on X and N-M additional observation of Y; the
maximum likelihood estimates of n and 2 can be obtained by expressing the
likelihood function interms ofthe marginal density ofYand the conditional density
of Z given Y,assuming multivariate normality and the missing observations are
few and are random.

Nature of missingdata

The nature of missing data determines the approach to handling the same.
The available methodology is mostly restricted to simple cases when missing
values arefewand missing at random. Theutility of available methods is limited
if these two assumptions are not satisfied (see Frane [10]).

Thus, missing values encountered are

(i) Missing at random.

(ii) Missing by design and probably can be estimated (see Srivastava [37]
and Federer [7], Studies onintercropping) insome cases.

(iii) Missing as they are unobservable. This category includes grouping,
censoring, and truncation as indicated by Dempster, Laird, and
Rubin [5].

Inthe real world, the nonrandom missing values due to design orbeyond the
control of theexperimenter aremore a rule than anexception.

The assumption commonly made inhandling missing data are:

(i) thedata must beniissing atrandom togetagood estimate ofthevariance
covariance matrix,

(ii) eachmissing variable is highly correlated with one or more available
variables,

(iii) theamount of missing data is notexcessive, and
(iv) multivariate normality is maintained. '

The problemofhandling missing data inmultivariate normal populations has
been studied during the pastthree decades by the direct application ofmaximum
likelihood for estimation. Testing ofhypotheses when data are missing by design ,
was attempted by sequentially combining covariance estimators, starting with
complete observations, andadding onegroup ata time. Iterative methods areused
more commonly toreplace themissiAg components under simplified assumptions
ofmultivariate normality and few values missing atlandomv Further improvement
of procedures was made by Orchard and Woodbury' [30]. Their procedure'

, 2 =
2yy 2yz'

\ /
^zy ^zz

\ ^ /
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consisted ofgrouping theobservations into classes ofidentical patterns ofmissing
and observed components, initial estimation of the meati and covariance matrix
being done using the likelihood function onthe complete vectors. They obtain the
conditional expectation ofthe scores forthe meaii and thecovariance matrix ofthe
missing data given theobserved data, then the new estimates of theparameters,
andfinally correcting thecovariance matrix correicted forbias,where

Si [(V v.] and i
' - ^ n-1ri«l.

Yk =Yk,o +Ykjm where Yk,o isthe observed portion with zero ineachposition
corresponding tothe missing compoiient and Yk^m isthe estimated missingportions,
with zero in the position conesponding to an observed component, and Vn is a
px p matrix for the nth observation.

Before discussing theprocedures onestimation ofmissing values and testing
ofhypothesis and inference, the effect ofmissing values onmultivariate normality
assumptionand standard testprocedures that the multivariate normality assumption
is not satisfied, can be examined.

Effect ofmissing values onmultivariate normality assumptions

The present testprocedures assume that multivariate normality isnotviolated
in the presence ofmissing values. This is notcorrect. Inourview, missing values
of a noiu^ndom nature have a considerable effect on multivariate normality
assumption, andconsequently, ontestingofhypotheses ofequality ofmeanvectors
and on the variance-covariance inatrices. The honrandom nature of missing data
is boundto violate multivariate normality, as canbe seenin truncated or censored
cases when a large segment of values can be missing. If some variables are
unobservable from thepointof truncation, it isnotevenmeaningful toestimate the
missing values. , ~

Testingfor multivariate normality

Theeffectsof anormality on thestandardmultivariate testproceduresare not
adequately examined. Testing the reasonableness of the multivariate normality
assumption for a given set of data, further complicated by nonrandom missing
values, is necessary to transform the data to make them approximately normally
distributed and to modify the model aissumed and to perform the methods of
analysis. There isa ?ieed for a "variety oftechniques into different sensitivities to
different typ^ of departures." Seeking a single best method woiild not be
pragmatic. Measures ofmultivariate skewness and kurtosis for testing tnuUivariate
normality proposed by Malkavich and [22], are multivari^t^generalizations
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of Fisher's univariate measures of skewness and kurtosis. These muhivariate
statistics are referred to as max(g) statistics gi and g2, and their asymptotic
distributions are derived by Machado [21], who has also provided the
transformations of gi and g2 to approximate standard normality. Mardia [23]
defined multivariate skewness and kurtosis and formulated some omnibus tests.
Thus, only recently, are tests available for multivariate normality and their utility
forcloseup transformation hasyetto beexamined.

The effect of multivariate nomormalily makes Wilks' likelihood ratio test
criterion invalid. The multivariate normality assumption can be violated either due
to (a) original variables being anormal or to (b) one variable being anormal (e.g.,
yield in maize may follow normality but yield of bean in the intercropping
experiments may be anormal in distribution anda linearcombination of M + bB
may be anormal and no transformation suitable for both variables may be
available). To transform either one ofthe variables, M+blogB will beabsurd for
interpretation.

When samples are large, effects of violation of multivariate normality
assumption may matter litfle when testing hypothesis about thejriean vectors but
may bevery serious when testing hypotheses about variance-cbvariance matrices.
The power of the test and the significance levels are also affected (see Ito, [15],
Eaton and Kovriya [6]). The question ofestimation and prediction inamultivariate
random effects generalized linearmodel under moderate departures from normality
was examined by Reinsel [32]. He observed that the theoretical mean squared error
expression for the random effects predictor remains valid under moderate
departures from normality while the general covariance structure method is
adversely affected by nonnormality.Jn such nonnormal cases, itmay be possible
to obtain predictors with somewhat smaller mean squared error by using more
robust procedures. Asimulated data study by himshowed good agreement between
theobserved and theoretical results fortherandom effects method and individual
least squares method and, inboth cases, the results were not affected by amoderate
noimormality of the errors.

Beale and Littie [3] have provided an alternative method ofaiialysis with
missing data which gives anestimator thatdoes notassume a multivariate normal
population while eariier work ofMLE estimator assumes multivariate normality.
This method was denoted by them as corrected maximum likelihood or modified
Buck's Method. An approximate method ofassigning standard errors to regression
coefficients estimated from incomplete observations and supported by simulation
studies isgiven bythem. However, their methods also assumelrandomness of the
missing data. Their procedure is illustrated below. Let Xi] represent tiie value of the
ithvariable inthe ith observation and j =1,..., nand i =1,. .., N. There are N
observations and n variables.^ Let Ajt = 2; (x^ - xj) (xjt - 3ck) and
Xj = Si Xij /N.
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Buck's method iises the complete observations to estimate the ineans of all
the variables and the covariance matrix. These values are then used to estimate any
missing quantities Xij as linear functions of thevariables which areknown forthis
observation. Substitute the estimators for the unknown variables the vector x, and

A • • J

the matrix (aik) canbe built.Let Xij be the assumed valueof the jth variable in the
ith observation."Ifthisvalueis observed, thenxjj = Xy , otherwise it isa fitted value.

Now

aj-k = 2; (Xij - Xj) ( Xik - Xk) + qj-k

and

Xj = 2; Xij /N

The appropriate formula for the correction term qj^ obtained by Beale and Little
[3] is

A

Cijk = Vjk if Xij and Xjk arebothunknown

= 0 otherwise

where Vjk denotes the partial covariance ofXj and x^ and Ujk denotes the covariance
of Xj and Xj,. The partial covariance is the covariance of (Xj - 2; Pji Xi) and
(Xk - 2; Pki X;) were Pj; and Pki are the partial regression coefficients defining
the best linear approximations to Xj and Xk respectively in terms of the variables
known in the first observation. Vjk =0 unless j >p and k >p. Vjk can beestimated
by pivoting^ on the first p diagonal elements of the matrix (cOjk) where

^jk= 2 (Xij - Xj) (Xifc- ^k) and EOjk= y^. Taking the
A

trial values ofXj and Ujjj, and we use them to compute Xjj and Cijk and hence Hjk
and Xj and set Xj = Xj and Ujj^ = ajk /(N - 1) and we repeat the process of
iteration until no fiirther change on any Xj or Ujk.

This analysis does not assume multivariate normality but assumes that the
probability of a particular variable being missing is independent of the numerical
values of any of the variables for this observation. The overall covariance matrix
for all variables is estimated by the corrected maximum likelihood and appropriate
submatrices used for regression analysis and estimating the standard errors of the
regressioncoefficients. They also confirmthat if the missing variablesare highly
correlated with known variables, this method may underestimate the precision but
reasonably safe. This method is a major improvement over the procedure of
Orchard and Woodbury [30], and gives a correction for bias of the estimates of the
covariance matrix.



MISSINGOBSERVATIONSIN MULTJVABIATEANALYSIS 117

Handlingofmissing data

In spite of the violations of some crucial underlying assumptions as
multivariate normality in missing data situations, several reports on handling
missing data particularly for prediction ofmissing values, areinthe literature. The
following arethemost commonly used methods :

(a) elimination ofsubjects with any missing data,
(b) computation of"missing value" covariance matrices, and
(c) estimation of missing data.

(d) correction for covariance matrix (already discussed, Beale and Little).
The procedure (a) is possible only when very few values are missing. Even

in those cases, there may be considerable loss of information as seenbelow. Let
therebe threevariables Xi, X2, andX3.

Variables

Individuals

or

treatments

Xi

0

0 .

ni

observations

X2

n2

observations

.X3,

ns

observations

Let 0represent missing values. Ifwe eliminate all individuals with missing
data on any one variable, as above, we may be left with no individual even among
the minimum group ofni under Xi. Thus there would be no meaningful use ofthe
data in A, B, or C.

Examine anothersituation and consider the following variance-covariance matrix:

»12 ^13

.S22

3 In

>kk

nj observations

n2 observations

n3 observations
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In the above case, one can have situations where Sn is based on all ni
observations, but S12 is based on ni-2 observations due to two missing values
involving variables Xj and X2. Thus, in the same rows ofsums of squares and sums
of products, the values could be based on unequal sets of observations even if the
missing values are random. Then, the structure of the variance- covariance matrix
becomes very complicated, where each element of the matrix is based on different
sets ofobservations. In such cases, any test of the covariance matrices, and equality
of mean vectors is fraught with clangers. The Wilks'test criterion used in several
cases of multivariateanalysis is notvalid. The power of this test and its significance
levels are also affected; and for

m
E+T|

what are the conesponding degree of freedom?

Where E represents enor matrix and T represents corresponding matrix for
treatments.

Assume, in the data vector Xi, . . . , Xp, one value missing Federer [7]
suggested that we reduce 1/p degree of freedom for each missing observation. This
appears to be empirical but reasonable. In such cases, we change the SS and SP
matrix to a uniform level for the use of suitable multipliers as follows. Assume Sn
is based on the higher number of observations nn, and S12 by ni2 and all values of
ny s nn:

ix s, s

. ni2

S22—
nil

"22

S
nil

I3r
ni3

82^
n23

S3:'n33

S ^
nik

"nipSip—

S2p—
n2p

S ^

This will simplify the handling of the matrix for such tests as equality of
matrices. An improvement over this method is possible and can be found as the
adjusted values of the above matrix are obtained by an arbitrary multiplier.

Missing^alues are replaced by conditional expectation assuming that the
deleted cases do not influence the maximum likelihood estimation of the regression
coefficients. Automatic deletion of incomplete cases is not desirable as important
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information may be lost and the deleted case can be relatively influential as
reflected in appreciable changes in the fitted regression coefficients when it is
removed&omthe data. ShihandWeisberg[35] developedaveryuseful procedure
to detect such influential cases by deriving a one-step influence measure using the
EM algorithm and demonstrated its utility with examples. Simon and Simonoff
[36] used least squares estimation to provide upper and lower limits for the
components of as a function of the non- randomness of the "processwhich causes
the values to be niissing". When a large proportion of degrees of freedom is lost
dueto missingdata,higherorderregressionorprincipalcomponentestimatorsmay
be explored (Basilevsky et ah, [2])

Estimation of missingdata

In the standardgeneral multivariate linearmodel (GLMM), the datavectors
are all assumed to be complete. As is quite coiranon for some data vectors
(observations), oneormorevaluesaremissing. Theavailable procedures are,under
standard assumption:

(i) data are missingat random and not excessive,

(ii) eachvariablewithmissing observations is highlycorrelated withoneor
more other variables.

Three approaches are currently being followed for estimation of missing
values. These are;

> Simple linear regression( )^ egression approach Stepwiseregressioh cases (Frame, [10])

(a) The regressionof the missingvariableon all the availablevariablesand,

(b) foreach missing value ontheavailable variables (Anderson, [17]). For
(b) let data, for example, be^denoted by X=(Xi, X2) where Xi denotes
the observedvariables and X2 denotes any estimate of the missing data.
Then, the Mahalanobis distanceif from this case to the mean is

D'=X'S-' X= Xi' Sll >.1 + - X2)'. (S22 - S21 Sl\ Suf (X2- X2)

where X2 is the regression estimate of the missing values from method (b). is
minimized whenX2 = Xj . In the caseof (a)X2 is closeto X2 and willbe near
its minimum.

(2)ML estimation using EMAlgorithm (Dempster, Laird.and Rubin [5])

(3) BAN estimation using MGLMM model (Kleinbaum [18]). Acomparigpn of (2)
and (3) is made by Hosking [14] with the results ofa Monte Carlo study, using
complete data, pairwise deletion for some combinations of sample size, proportion
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of missing values and average interconelations among the dependent variables.
The overall superiority of ML estimation is brought out by him.

(4)Imputation ofmissing values (Greenless etal. [12]). Theprinciple isparameter
estimation in a regression model with stochastic censoring of the dependent
variable. That is, the case in which the probability of nonresponse for the variable
of interest depends upoii the value of that variable (one should not ignore the
mechanism causingthe values to be missii^).

ML estimation using EM algorithm

There are two steps for each iteration:

(a) expectation step followed by

(b) maximizationstep.

The main computation is to find the parameters of the conditional
multivariate normal distribution of,the missing values given the observed values
in that row. That is, given a partially observed X, we replace the inissing parts of
sums, sums of squares, and sums of products by their conditional expectations
given the observed datiEi and current fitted population parameters.

H This method is advantageous because of its simplicity and generality. This
method also assumes that data are missing at random.

n The EM procedure has also been given for nonrandom missing values like
grouped or censored data commonly encountered. But the multivariate
normality assumption is still maintained (variables are jointly normally
distributed) particularly in factory analysis.

n When there are several missing values, EM algorithm is rather slow.

« EM algorithm does not provide estimates of standard error since calculation
and inversion of the information matrix is avoided. However, its advantage is
that it provides fitted values for the missing data. The results depend on the
pattern of the missing data.

« When the number of missing cells is large in the contingency tables, the
iterative fitting procedure is more efficient than the EM algorithm.

Therefore, we should examine the relevance of estimating variances by the
EM method for the unobservable values; as pointed out by Searle [34]. EM is still
a good procedure among those available for estimating missing values.
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EM algorithm provides correct maximum likelihood estimation for many
missing data problems assuming multiyariate_ normality, by maximizing the
likelihood function Li (0, Zm / Zp) = f( Zm, ^ / 0) with respect to (0, Zm).
Recently, Little and Rubin [20] have suggested a procedure for handling
incomplete datawhenthedataarenot missingat randomby maximizing theactual

likelihood fiinction L2(0/Zp) =J f(Zm, Zp/0) dZm which means that the
complete-data likelihood is integrated overthemissing dataZm. Thisprocedure is
moreappropriate thanjointjnaximizing of the complete data likelihood fiinction
Li (0, Zm / ^) = f( Zm, Zp/0) with respect to Zm and 0which is useful only
when fewvaluesare missing.Thuseven the most recentwork using EMalgorithm
does not meet the needs whenthe assumptions of multivariate normality are not
valid and themissing data are large butsample sizeremains fixed.

A method of handling non-randomly missingdata in arrayed contingency
tables using Turner's syndrome data is described by Nordheim [29] where the
incompleteness of the data is dependent on the category identity of the
observations. Sensitivity analysis incorporating parameters related to the missing
data mechanism are recommended for estimates and testing. By introducing a
parameter R, which is the ratio of probabilities of uncertain classification, some
information on the missing data mechanism canbe obtained independently of the
data.SuchRvalues areprovided bya roughestimate fromknowledgeable workers
in the particular area.

Testing ofhypotheses and inference withmissing data

There is very little work on this aspect. The workof Srivastava [37] is an
attempt on prediction and is not useful for several situations. The work of Sarkar,
Sinha, and Krishnaiah [33] andKariya, Krishnaiah, andRao[17] onsome aspects
of missing datain hierarchical classification is theonlyavailable information. The
paper by Kariya, Krishnaiah, and Rao [17] is closer to some common situations
but is still based on multivariate normality and random missing data. This is an
extension of testing unbalanced data from a bivariate nohnal" distribution (Sarkar,
Sinha,and Krishnaiah, [33]. Let us considerni pairedobservations, n2 additional
observationson X only, and ns additional observation on Y only.

ni s n2S n3

"2

Define anew variable X* = ^iX; - (1 - Xi) ^ dj'
j-i

where the matrices Ci = <̂ ^ and Cj = <̂cSt' ^ satisfy Ci 1„^ =1^^
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and

Ci Ci' = (ni / nz) In, ; C2In, = I_n,; C2 C2' = (ni /113) In,

then

(x:, y:) i = 1,2,..., n are iid.

Therefore, tests on hypotheses, Hoj : = 0, H02 = Ho3 • P- ^
against the alternatives remain invariant under the group oftransformations.

X; = a +bX; , Xn,+j -» a +bXn^+j

Y; = C+dY; , Yn,+ n2 +k C+dYn^+nj+k

and

-oo<a,b,c,d<oo and b, d ^ 0

Thus, Kariya, Krishnaiah, and Rao [17] considered with Kariya's earlier
works, show thatbyusing conditional distributions, it ispossible toprovide tests
for equality ofmean vectors ofcorrelated multivariate normal populations. Gupta
and Rohatgi [13] considered only a bivariate normal case and estimation of
covariance with missing data in that special case. Srivastava's [37] paper on
multi-response experiments is also inadequate except for prediction in special
cases. In all the above three papers, assumptions like multivariate,nprmality and
data missing onseveral variables (probably at random), are made which are not
useful in manysituations arising in practice.

ML estimates and likelihood ratio statistics and their asymptotic null and
non-null distributions arederived easily forthek-populationtesting andestimation
problem with patterned means and covariance matrices inthe presence ofmissing
data. The standaid delta method is used for deriving the asymptotic non- null
distributions. Iterative algorithms forfinding MLE and asymptotic distributions of
theMLEand likelihood ratio statistics (LRS) arepresented using theEM algorithm.

Srivastava [38] presented a general approach for obtaining ML estimates
when themissing values arefew innumber compared tothesample available even
when data aremissing by design. The asymptotic distribution of thestatistics on
whichthe likelihood ratiotest isbasedisderived.However, theworkofSzatrowski
[39] and Srivastava [38] does not meet the realistic need where sample size is not
very large and missing data are not few. Giving asymptotic results forthe missing
data problem eliminates the problemofmissing data but does not solve the problem
ofestimation and testing forfinite sample size. As stated byLittle and Rubin [20]
the asymptotic approach to the missing data problem involves a"trivial assumption
inwhich the proportion ofmissing data goes tozero asthe sample size increases."
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Distribution-freeprocedures in multivariatedata withmissingobservations

As multivariatenonnality assumptions are violatedin manycasesof missing
data,theuseoftestswhere thedispersion matrix isnotnecessarily p-variate normal
is of interest. These areuseful inthecaseof discrete variables. Klotz[19] proposed
a distribution-freeprocedure for missing observations in ordered categorical data,
and proposed a modified Cochran-Friedman test. This procedure can be used for
testing the equality of treatment means and also to construct a linear combination
of treatment subgroups.

The diversity coefficient (DIVC) discussed byRao [31] tomeasure diversity
between and within populations for several variables including discreteones, does
not require a normality assumption. This measure could be related to Mahalanobis

statistic commonly used to quantify the divergence between populations, but
does not take into considerationall situationswith missingdata.

The paper by Klotz [19] is only a begiiming in the desired direction-witb-
assumption of two or three randomly missing values. There is also loss of
information inhisprocedure aspart ofthedata withequal ranksfor thetreatments
isdiscardedfromanalysis.Thisis morea problemof the limitedrangeofthe scale
of thevariable (in this casea score of 2-7wasused). If censoring or truncation is
responsible for missing values, we have the same problem with discrete data as
with multivariate continuous distributions. More work is needed in the area of

nonparametric analysis for missing data.

The robustness ofmultivariate: tests

Evenif multivariatenormalityis notsatisfiedas in somespecialdistributions
like 0 (n)-invariant distributions (including elliptically symmetrical distributions),
the usual MANOVA tests like the likelihood ratio test, Roy's test,
Lawley-Hotelling's test, and Pillai's test, which are uniformly most powerful
invariant (UMPI)under inultivariatenormality,are still UMPI in these above two
anormaldistributions.Tests forequalityof covariancematrices for nonnormaldata
can be doneundersomeconditions (Kariya, [16]). It remains to be seen if these
situations are similar with missing data.

Conclusions:

1) Thereisneedto compare theestimation/prediction, testing forequality
of mean vectors or means, and testing for equality of covariance
matrices usingsimulated data with a) complete data, b) datamissingat
random, c) data missing due to design, and d) data missing due to^
truncation or censoring.



124 JOURNAL OF THEINDIANSOCIETYOFAGRICULTURAL STATISTIC^

2) Theeffectof missingdata,particularly intype(c)and(d)onmultivariate
noimality assumptions and standard test procedures is unknown.

3) Estimationof means and tests of equalityof meanvectors are available
now. When we need discriminating analysis, tests of equality of
variance-covariance matrices are yet to be developed for missing data.

4) A closer look at the maximum likelihood estimation from incomplete
data with the EM algorithm, particularly for the situation where the
elements of a variance-covariance matrix are based on unequal
observations, will be of interest.

5) There is a need to assess the methods themselves and provide
modifications of the methods in the case of missing values of a
nonrandom nature. Work on asymptotic distributions of the maximum
likelihood estimates and likelihood ratio statistics, assume missing
values are few, does not meet the realistic needs as sample sizes are
finite and missing data are not few.

6) Continuous interactionof the theoreticaland applied users is neededto
eliminate the gaps between theory and actual practice.
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